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ABSTRACT

The relatively new science of chaos has now entered an ex-
citing stage of practical application to real-world problems,
impacting such diverse areas as communications, fluid me-
chanics, and physiology. This paper will introduce the ba-
sics of dynamical systems, provide a beginner’s guide to
chaos and the closely related disciplines of fractals and
wavelets, and discuss several novel communications/signal
processing applications of interest to microwave engineers.

1. INTRODUCTION

Until only recently, the field of nonlinear dynamics has re-
mained within the confines of academia, and has found lim-
ited practical application to engineering problems. How-
ever, this situation is now undergoing a revolution of sorts,
given (1) the several paradigm-shifting discoveries that
have taken place in the closely related fields of chaos, frac-
tals, and wavelets; (2) the advent of powerful computing
tools that make the complex numerical simulation of non-
linear phenomena possible; as well as (3) the ever more
pressing need to account for, and deal with nonlinear effects
that can no longer be adequately handled by mere linear ap-
proaches. This paper will provide a top-level introduction
and survey of nonlinear dynamics, especially the phenom-
ena of chaos and chaotic synchronization, as well as touch
upon the application of nonlinear techniques to the three
fundamental considerations in communications design: ef-
ficiency, reliability, and security. In particular, such designs
seek to maximize information density, be immune to nat-
ural and artificial interference, or ensure that the message
sent be received or understood by only an authorized lis-
tener. The applications presented here will focus on the
harnessing of chaos for private/secure communications—
illuminating techniques that could rival and replace tradi-
tional approaches. Other potential novel applications of
chaos will also be proposed, as well as a quick mention of
the already well-established uses of fractals and wavelets—
both impacting the other two aspects of communications.
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2. FUNDAMENTALS OF NONLINEAR DYNAMICS
AND CHAOS

The field of dynamics concerns the study of systems whose
internal parameters (called states) obey a set of temporal
rules, essentially encompassing all observable phenomena.
This endeavor divides into three subdisciplines, namely:
(1) applied dynamics, which concerns the modeling process
that transforms actual system observations into an idealized
mathematical dynamical system (that is, state equations
that relate the future states to the past states—usually a set
of difference, ordinary differential, or partial differential
equations);

(2) mathematical dynamics, which primarily focuses on the
qualitative analysis of the model dynamical system; and
(3) experimental dynamics, which ranges from controlled
laboratory experiments to the numerical simulation of state
equations on computers.

The state temporal behavior is either viewed as a tradi-
tional time series (i.e., a given state parameter versus time)
or, more usually, in a phase space perspective wherein the
n system states are plotted against each other in an n-
dimensional space with time as an implicit parameter (see
Figure 1 for the case n = 2, adapted from the excellently
illustrated text on dynamics by Abraham and Shaw [1]).
The latter framework affords a more natural geometrical
setting that possesses an arsenal of analysis tools. A dy-
namical system is said to be linear or nonlinear depend-
ing on whether the superposition rule holds: that is, does
the sum of responses to individual stimuli (inputs or ini-
tial conditions) equal the single response to the sum of the
stimuli? The latter (and more general) class is the subject
of this paper, since it leads to a virtual universe of effects
(chaos is but one) with potential practical import that is
just beginning to be realized.

One of the most well known and potentially useful non-
linear dynamical effects is the bounded, random-like be-
havior called chaos—in essence, “deterministic noise” (see
[2], for example). Chaos has been found to occur in a
whole myriad of dynamical systems modeling phenomena
from astronomy to zoology, and in frequency ranges from
baseband to optical. This phenomena, and its closely re-
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Figure 1: Two perspectives for representing the temporal
evolution of dynamical state variables. (a) Time series for
a two-dimensional dynamical system. (b) Planar phase
space orbit obtained by projecting out the time parameter
in (a).

lated fractal cousin have been put forth as a new paradigm
for understanding and modeling the world around us. This
stems from their underlying principle of self-similarity at
different scales that matches closely with what is observed
in nature.

There are three fundamental characteristics of chaos: (1)
an essentially continuous and possibly banded frequency
spectrum that resembles random noise; (2) sensitivity to ini-
tial conditions, that is, nearby orbits diverge very rapidly;
and (3) an ergodicity and mixing of the dynamical orbits
which in essence implies the wholesale visit of the entire
phase space by the chaotic behavior and a loss of informa-
tion. Some of these traits are illustrated in Figure 2, whose
top portrait shows what is called a strange astractor—
a primary manifestation of chaotic behavior—in a proto-
typical third-order, unforced, continuous dynamical system
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Figure 2: Some characteristic features of chaotic behavior.
(a) Chaotic strange attractor from a third-order system. (b)
Illustration of sensitivity to initial conditions.

(called the Russler system). Note the stretch-and-fold oper-
ation that is endemic to these attractors, giving rise to their
boundedness and fractional dimension (i.e., space-filling
nature). Figure 2(b) illustrates the sensitivity to initial con-
ditions for another prototypical third-order chaotic system
(known as the Lorenz system). Observe how only a slight
change in the initial y-coordinate value y0 leads quickly to
very different orbital futures, sometimes referred to as the
“butterfly effect.” Chaos can be of a transient, intermit-
tent, or steady-state nature, and, in principle, can include
an infinite number of both periodic orbits of any period and
nonperiodic orbits. These unique properties alone have led
to several of the applications listed below.

It was the discovery of chaotic synchronization [3] that

marked the rapid growth of applied chaos, for it allowed
chaos to be modulated and demodulated like a generalized
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Figure 3: Schematic illustration of the master-slave form
of chaotic synchronization.

carrier. There are four basic chaotic synchronization tech-
niques already extant: the primary and first master-slave
form that made chaotic communications possible is de-
picted in Figure 3 [3]. Here a subsystem of a chaotic system
is replicated remotely and driven by the remaining unrepli-
cated state variables. In its simplest continuous instance,
the entire drive system would be third-order, while the w-,
w’-subsystem would be second-order, meaning that only a
scalar variable v is transmitted across the communications
channel linking the drive and response systems. Appropri-
ate rigorous conditions insure the chaotic synchronization
of the w- and w’-subsystems, and they allow for real-world
parameter mismatches. This generalized synchronization
may prove to possess superior properties compared to its
classical digital counterpart (e.g. in its robustness, speed,
immunity against channel perturbations and filtering, im-
plementation simplicity, etc.).

3. REPRESENTATIVE APPLICATIONS

The following list enumerates representative applications
that have been demonstrated/proposed for chaos, fractals,
and wavelets (all of which have self-similarity in common),
offering a glimpse of the power and potential of applied
nonlinearity:

(i) Employing the natural pseudorandomness of chaotic be-
havior from nonlinear maps, several chaotic key generators
have been formulated for use in traditional digital crypto-
graphic and spread-spectrum systems [4]. Although early
versions of this approach were susceptible to short-cycling
problems (because of the nature of chaos possessing pe-
riodic orbits of all periods), improved modifications have
been shown to rival classical feedback shift registers in
passing the standard randomness tests.

(ii) In a similar vein, chaotic and quasi-chaotic nonlinear
maps (both 1D and 2D) have been used as the basis for data
and image encryption [5, 6]. The idea here is that simple
nonlinear maps can give rise to very complicated behavior
in only a few iterations; and if the process is reversible,
then encryption and decryption can be accomplished. The
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security of the scheme is embedded in the nature of the
map and its parameters, the former of which must exactly
match between the sender and receiver, while the latter can
only allow for very small discrepancies.

(iii) A whole series of baseband communications links have
been demonstrated, based on the various forms of chaotic
synchronization and modulation that have been developed,
the latter ranging from simple additive masking to indirect
parameter modulation that could offer enhanced message
privacy/security. Figure 4 illustrates one of these setups,
using a cascaded form of master-slave synchronization and
additive chaotic modulation. This system was found to
be quite resilient to noise/interference added to the linking
channel, as is needed for a pragmatic communications sys-
tem. Part (a) of the figure shows the transmitter/receiver
configuration that is based on the previously mentioned
Lorenz system. In this case, the chaotic carrier x is modu-
lated by adding a voice message at a much lower level, and
is recoverable since the chaotic carrier is locally coherently
regenerated in the receiver. In part (b), actual experimental
results are shown for the chaotic communication system
in (a) using baseband speech as the message. Note how
the message is buried in the “noise” when viewed in the
communications channel, indicating the system’s capabil-
ity for low-probability-of-intercept (LPI) and private trans-
missions. The author is currently directing efforts at The
Aerospace Corporation to realize and explore microwave
chaotic communications that would be comparable with
current real-world implementations.

(iv) The subfield of control chaos, which involves the use
of adaptive techniques to parametrically control dynami-
cal behavior, holds much promise in applications ranging
from enhanced key generators to chaotic signal constel-
lations [8]. In particular, these techniques allow for the
exploitation of the complicated orbits that chaos can har-
bor, such as keeping the system on long periodic orbits for
key generation; or dividing a strange attractor into several
regions, each of which can represent a digital symbol, in
chaotic signaling.

(v) It has been said by the philosopher Spinoza that there is
truly nothing random—what appears random really has an
underlying structure that has yet to be discovered. With this
motivation, the subdiscipline of deimbedology has emerged
to try to ascertain the dynamical systems that underlie ap-
parently random processes. This would have great practi-
cal import, for if common performance-limiting noise pro-
cesses could be modeled with chaos (e.g. phase noise in
oscillators and amplifiers), they could also be subsequently
removed adaptively. This so-called denoising is already be-
ing accomplished with wavelet techniques in such contexts
as musical recordings (decoughing) and medical physiology
(smart heart pacemakers).

(vi) Based on the fact that different strange attractors do
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Figure 4: Example of chaotic masking modulation, one of
several means for chaotic communications [7]. (a) System
configuration. (b) Experimental results for speech.

not correlate with each other, analog chaotic versions of
CDMA and spread-spectrum systems can also be proposed,
with the strange attractor playing the role of a traditional
sinusoidal carrier.

(vii) Fractal interpolation and wavelet methods have been
fruitfully applied to information/image compression, with
such examples as the Microsoft® Encarta™ CD and the re-
cently adopted FBI fingerprint database system [9]. These
applications are based on the converse of the notion that
simple dynamical systems can produce complex behavior.

(viii) A new paradigm for communications signaling is be-
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ing developed using wavelets, providing generalized redun-
dancy and orthogonality that is effective against such con-
texts as rapidly changing and unknown channels {10].

4. CONCLUSION

An introduction to the field of nonlinear dynamics and
chaos has been presented, along with a set of represen-
tative applications. These are a mere sampling of the open
frontier of applied nonlinearity—a field that will have a
far-ranging impact on future communications systems.
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