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ABSTRACT

The relatively new science of chaos has now entered an ex-

citing stage of practical application to real-world problems,

impacting such diverse areas as communications, fluid me-

chanics, and physiology. This paper will introduce the ba-

sics of dynamical systems, provide a beginner’s guide to

chaos and the closely related disciplines of fractals and

wavelets, and discuss several novel communications/signal

processing applications of interest to microwave engineers.

1. INTRODUCTION

Until only recently, the field of nonlinear dynamics has re-

mained within the confines of academia, and has found lim-

ited practical application to engineering problems. How-

ever, this situation is now undergoing a revolution of sorts,

given (1) the several paradigm-shifting discoveries that

have taken place in the closely related fields of chaos, frac-

tals, and wavelets; (2) the advent of powerful computing

tools that make the complex numerical simulation of non-

linear phenomena possible; as well as (3) the ever more

pressing need to account for, and deal with nonlinear effects

that can no longer be adequately handled by mere linear ap-

proaches. This paper will provide a top-level introduction

and survey of nonlinear dynamics, especially the phenom-

ena of chaos and chaotic synchronization, as well as touch

upon the application of nonlinear techniques to the three

fundamental considerations in communications design: ef-

ficiency, reliability, and security. In particular, such designs

seek to maximize information density, be immune to nat-

ural and artificial interference, or ensure that the message

sent be received or understood by only an authorized lis-

tener. The applications presented here will focus on the

harnessing of chaos for privatelsecure cornmunications—

illuminating techniques that could rival and replace tradi-

tional approaches. Other potential novel applications of
chaos will also be proposed, as well as a quick mention of

the already well-established uses of fractals and wavelets—

both impacting the other two aspects of communications.

2. FUNDAMENTALS OF NONLINEAR DYNAMICS

AND CHAOS

The field of dynamics concerns the study of systems whose

internal parameters (called states) obey a set of temporal

rules, essentially encompassing all observable phenomena.

This endeavor divides into three subdiscipline, namely:

(1) applied dynamics, which concerns the modeling process

that transforms actual system observations into an idealized

mathematical dynamical system (that is, state equations

that relate the future states to the past states—usually a set

of difference, ordinary differential, or partial differential

equations);

(2) mathematical dynamics, which primarily focuses on the

qualitative analysis of the model dynamical system; and

(3) experimental dynamics, which ranges from controlled

laboratory experiments to the numerical simulation of state

equations on computers.

The state temporal behavior is either viewed as a tradi-

tional time series (i.e., a given state parameter versus time)

or, more usually, in a phase space perspective wherein the

n system states are plotted against each other in an n-

dimensional space with time as an implicit parameter (see

Figure 1 for the case n = 2, adapted from the excellently

illustrated text on dynamics by Abraham and Shaw [l]).

The latter framework affords a more natural geometrical

setting that possesses an arsenal of analysis tools. A dy-

namical system is said to be linear or nonlinear depend-

ing on whether the superposition rule holds: that is, does

the sum of responses to individual stimuli (inputs or ini-

tial conditions) equal the single response to the sum of the

stimuli? The latter (and more general) class is the subjat

of this paper, since it leads to a virtual universe of effects

(chaos is but one) with potential practical import that is

just beginning to be realized.

One of the most well known and potentially useful non-

linear dynamical effects is the bounded, random-like be-

havior called chaos—in essence, “deterministic noise” (see

[2], for example). Chaos has been found to occur in a

whole myriad of dynamical systems modeling phenomena

from astronomy to zoology, and in frequency ranges from

baseband to optical. This phenomena, and its closely re-
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Figure 1: Two perspectives for representing the temporal

evolution of dynamical state variables. (a) Time series for

a two-dimensional dynamical system. (b) Planar phase

space orbit obtained by projecting out the time parameter

in (a).

lated fractal cousin have been put forth as a new paradigm

for understanding and modeling the world around us. This

stems from their underlying principle of self-similarity at

different scales that matches closely with what is observed
in nature.

There are three fundamental characteristics of chaos: (1)
an essentially continuous and possibly banded frequency

spectrum that resembles random noise; (2) sensitivity to ini-

tial conditions, that is, nearby orbits diverge very rapidly;

and (3) an ergodicity and mixing of the dynamical orbits

which in essence implies the wholesale visit of the entire

phase space by the chaotic behavior and a loss of informa-

tion. Some of these traits are illustrated in Figure 2, whose

top portrait shows what is called a strange attractor—

a primary manifestation of chaotic behavior—in a proto-

typical third-order, unforced, continuous dynamical system
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Figure 2: Some characteristic features of chaotic behavioz

(a) Chaotic strange attractor from a third-order system. (b)

Illustration of sensitivity to initial conditions.

(called the ROssler system). Note the stretch-and-fold oper-

ation that is endemic to these attractors, giving rise to their

boundedness and fractional dimension (i.e., space-filling

nature). Figure 2(b) illustrates the sensitivity to initial con-

ditions for another prototypical third-order chaotic system

(known as the Lorenz system). Observe how only a slight

change in the initial y-coordinate value yO leads quickly to
very different orbital futures, sometimes referred to as the

“butterfly effect.” Chaos can be of a transient, intermit-

tent, or steady-state nature, and, in principle, can include

an infinite number of both periodic orbits of any period and

nonperiodic orbits. These unique properties alone have led

to several of the applications listed below.

It was the discovery of chaotic synchronization [3] that

marked the rapid growth of applied chaos, for it allowed

chaos to be modulated and demodulated like a generalized
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Figure 3: Schematic illustration of the master-slave form

of chaotic synchronization.

carrier. There are four basic chaotic synchronization tech-

niques already extant: the primary and first master-slave

form that made chaotic communications possible is de-

picted in Figure 3 [3]. Here a subsystem of a chaotic system

is replicated remotely and driven by the remaining unrepli-

cated state variables. In its simplest continuous instance,

the entire drive system would be third-order, while the w-,

w’-subsystem would be second-order, meaning that only a

scalar variable v is transmitted across the communications

channel linking the drive and response systems. Appropri-

ate rigorous conditions insure the chaotic synchronization

of the w- and w’-subsystems, and they allow for real-world

parameter mismatches. This generalized synchronization

may prove to possess superior properties compared to its

classical digital counterpart (e.g. in its robustness, speed,

immunity against channel perturbations and filtering, im-

plementation simplicity, etc.).

3. REPRESENTATIVE APPLICATIONS

The following list enumerates representative applications

that have been demonstrated/proposed for chaos, fractals,

and wavelets (all of which have self-similarity in common),

offering a glimpse of the power and potential of applied

nonlinearity:

(i) Employing the natural pseudorandornness of chaotic be-

havior from nonlinear maps, several chaotic key generators

have been formulated for use in traditional digital crypto-

graphic and spread-spectrum systems [4]. Although early

versions of this approach were susceptible to short-cycling

problems (because of the nature of chaos possessing pe-

riodic orbits of all periods), improved modifications have

been shown to rival classical feedback shift registers in

passing the standard randomness tests.

(ii) In a similar vein, chaotic and quasi-chaotic nonlinear

maps (both ID and 2D) have been used as the basis for data

and image encryption [5, 6]. The idea here is that simple

nonlinear maps can give rise to very complicated behavior
in only a few iterations; and if the process is reversible,

then encryption and decryption can be accomplished. The

security of the scheme is embedded in the nature of the

map and its parameters, the former of which must exactly

match between the sender and receiver, while the latter can

only allow for very small discrepancies.

(iii) A whole series of baseband communications links have

been demonstrated, based on the various forms of chaotic

synchronization and modulation that have been developed,

the latter ranging from simple additive masking to indirect

parameter modulation that could offer enhanced message

privacylsecurity. Figure 4 illustrates one of these setups,

using a cascaded form of master-slave synchronization and

additive chaotic modulation. This system was found to

be quite resilient to noise/interference added to the linking

channel, as is needed for a pragmatic communications sys-

tem. Part (a) of the figure shows the transmitter/receiver

configuration that is based on the previously mentioned

Lorenz system. In this case, the chaotic carrier x is modu-

lated by adding a voice message at a much lower level, and

is recoverable since the chaotic carrier is Ioeally coherently

regenerated in the receiver. In part (b), actual experimental

results are shown for the chaotic comrrmnication system

in (a) using baseband speech as the message. Note how

the message is buried in the “noise” when viewed in the

communications channel, indicating the system’s capabil-

ity for low-probability-of-intercept (LPI) and private trans-

missions. The author is currently directing efforts at The

Aerospace Corporation to realize and explore microwave

chaotic communications that would be comparable with

current real-world implementations.

(iv) The subfield of control chaos, which involves the use

of adaptive techniques to parametrically control dynami-

cal behavior, holds much promise in applications ranging

from enhanced key generators to chaotic signal constel-

lations [8]. In particular, these techniques allow for the

exploitation of the complicated orbits that chaos can har-

bor, such as keeping the system on long periodic orbits for

key generation; or dividing a strange attractor into several

regions, each of which can represent a digital symbol, in

chaotic signaling.

(v) It has been said by the philosopher Spinoza that there is

truly nothing random-what appears random really has an

underlying structure that has yet to be discovered. With this

motivation, the subdiscipline of deimbedoiogy has emerged

to try to ascertain the dynamical systems that underlie ap-

parently random processes. This would have great practi-

cal import, for if common performance-limiting noise pro-

cesses could be modeled with chaos (e.g. phase noise in

oscillators and amplifiers), they could also be subsequently

removed adaptively. This so-called derzoising is already be-

ing accomplished with wavelet techniques in such contexts

as musical recordings (decoughing) and medical physiology
(smart heart pacemakers).

(vi) Based on the fact that different strange attractors do
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ing developed using wavelets, providing generalized redun-

dancy and orthogonality that is effective against such con-

texts as rapidly changing and unknown channels [10].

4. CONCLUSION

~ Message An introduction to the field of nonlinear dynamics and
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Figure 4: Example of chaotic masking modulation, one of

several means for chaotic communications [7]. (a) System

configuration. (b) Experimental results for speech.

not correlate with each other, analog chaotic versions of

CDMA and spread-spectrum systems can also be proposed,

with the strange attractor playing the role of a traditional

sinusoidal carrier.

(vii) Fractal interpolation and wavelet methods have been

fruitfully applied to information/image compression, with

such examples as the Microsoft@ EncartaTM CD and the re-

cently adopted FBI fingerprint database system [9]. These

applications are based on the converse of the notion that

simple dynamical systems can produce complex behavior.

(viii) A new paradigm for communications signaling is be-

chaos has been presented, along with a set of represen-

tative applications. These are a mere sampling of the open

frontier of applied nonlinearity-a field that will have a

far-ranging impact on future communications systems.
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